


# **Out-of-Himalaya:** The impact of past Asian environmental changes on the evolutionary and biogeographical history of Dipodoidea (Rodentia)

Julie Pisano, Fabien L. Condamine, Vladimir Lebedev, Anna Bannikova, Jean-Pierre Quéré, Gregory I. Shenbrot, Johan R. Michaux\*, Marie Pagès\*





**Birch mouse** 







**Jumping mouse** 

Original Article submitted in *Journal of Biogeography* 

# INTRODUCTION Material & methods Results & Discussion Dipodoidea, a superfamily left out...



(Holden & Musser, 2005; Lebedev et al., 2012)

Conclusion

Dipodoidea, a superfamily distributed throughout the Holarctic:



• Many species found in different remote arid habitats

Dipodoidea are particularly relevant for testing biogeographic scenarios

BUT

# Lack of a suitable phylogenetic framework is still impeding the inference of their

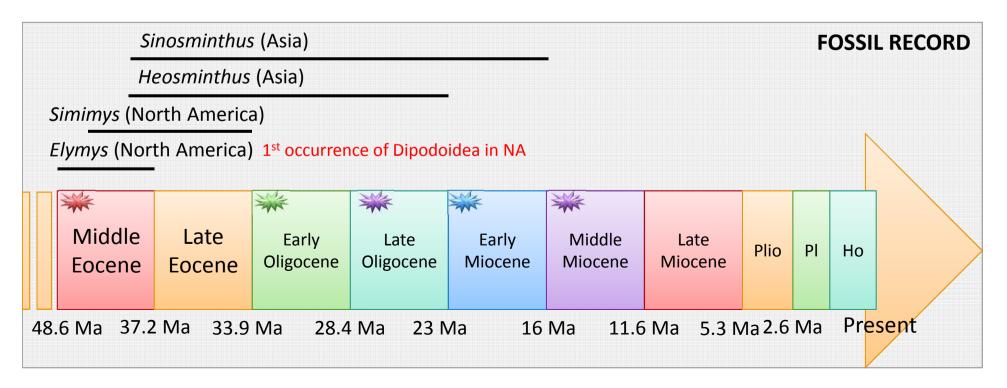
biogeographic history










INTRODUCTION

**Material & methods** 

**Results & Discussion** 

Dipodoidea, investigation of their evolutionary history in progress: ZHANG ET AL. (2012):

- i Middle Eocene: Diversification of modern **Dipodoidea** (*i.e.* crown; ≈42.7 Ma)
- Warming period spanning from Late Oligocene through Early Miocene: Diversification of Sminthidae (≈16.8 Ma)
- Global cooling following the mid-Miocene climatic optimum: Diversification of Zapodidae (~13.2 Ma) and Dipodidae (~27 Ma)
   WU ET AL. (2012):
- ﷺ Early Oligocene: Origin of modern Dipodoidea (*i.e.* crown; ≈32.4 Ma)



INTRODUCTION Material & methods

**Results & Discussion** 

Conclusion

Objectives of this study:

Based on the most complete species-level phylogeny (34/51 spp.), we reconstructed the temporal and biogeographic origins of the group with

- 1. Estimates of divergence times using a Bayesian relaxed molecular clock calibrated with fossils;
- 2. Inferences of biogeographic and evolutionary history using the dispersal-extinctioncladogenesis model



#### Follow me...



#### I will tell you my evolutionary history!



### Introduction

### **MATERIAL & METHODS**

Conclusion

# Taxon sampling:

- 34/51 species of Dipodoidea
  - 15/16 genera
    (Single missing genus: Salpingotulus)
- 12 outgroup species (Muroidea, Sciuridae, Aplodontiidae)
  - Selected to recovered specific nodes in the phylogeny allowing the use of fossils as calibration points to constrain nodes

Phylogenetic analyses:

- Molecular datasets:
  - Markers: Cyt b, IRBP, GHR, RAG1, BRCA1
  - Combined matrices:
    - Densely sampled matrix
    - Species-level matrix
- Partitioning:
  - ✓ PartitionFinder 1.1.1:

Appropriate subset partitions Appropriate substitution models of sequence evolution

## • Phylogenetic analyses:

- 1. PhyML 3.0 & MrBayes 3.2.2: on each gene independently
  - ✓ Congruence between markers
- 2. raxmlGUI 1.31 and MrBayes 3.2.2:
  - ✓ Analyses on combined datasets
- **3. ASSESSMENT OF THE TREE TOPOLOGY:** (solved questions unresovled in Lebedev *et al.* (2012))
  - Bayes factors

Hypotheses (1st part): The single species of Euchoreutinae with

- a. Allactaginae
- b. Dipodinae

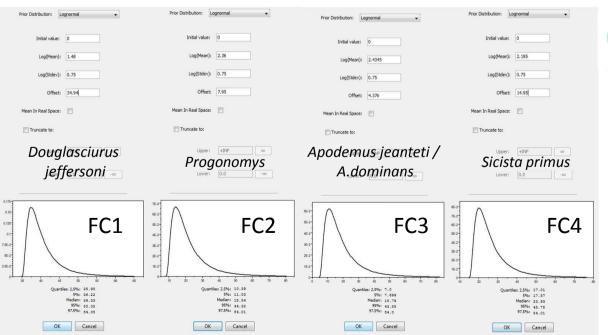
Hypothesis (2<sup>nd</sup> part):

c. Monophyly of Allactaga



## Introduction MATERIAL & METHODS

**Results & Discussion** 


Conclusion

# Bayesian divergence time estimations (BEAST 1.8.0) Molecular divergence dates:

- Bayesian relaxed clock
- Clock model: Uncorrelated log-normal relaxed clock
- Tree model: Yule / birth-death speciation process

Fossil calibration point parameters:

- Soft bounds:
  - Log-normal distributions :
    - 2.5% quartile = Minimum age of the geological interval where the fossil was found
    - 97.5% quartile = 54 Ma, *i.e.* geological interval where *Erlianomys*, the oldest known fossil of Myodonta, was found



#### **Cross-validation:**

 Omission one by one each of the FC in turn to identify putative inconsistencies

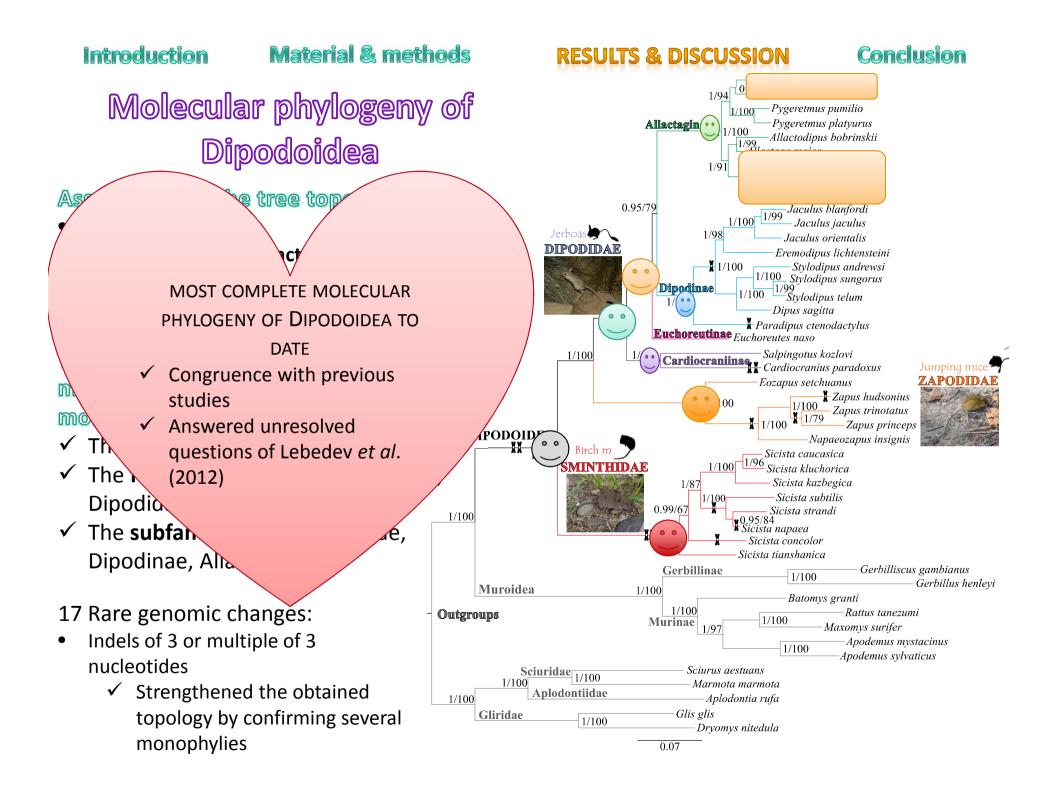
#### In total: 10 dating analyses

## Introduction

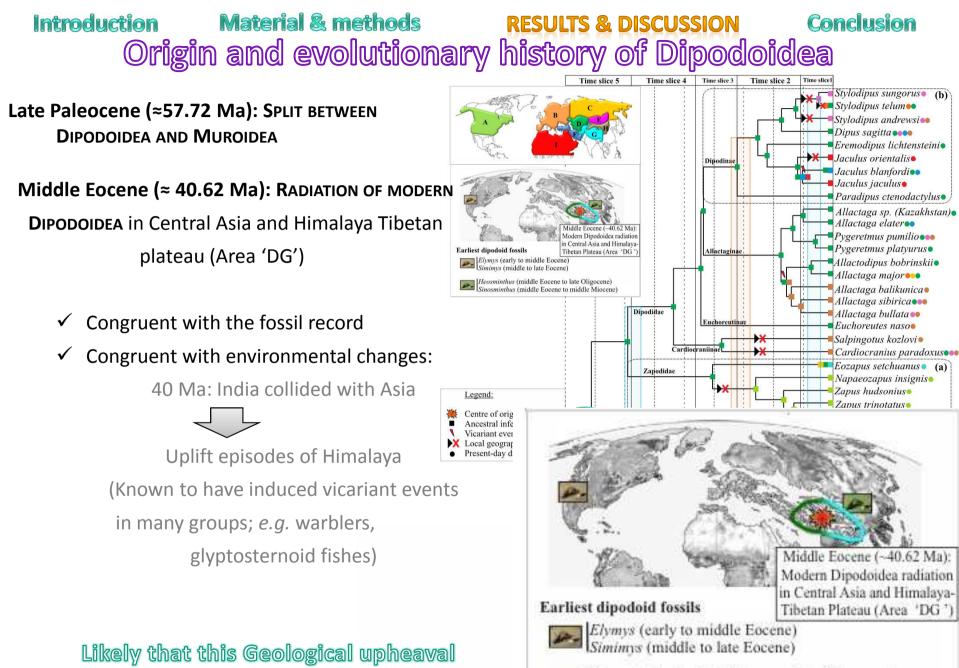
**MATERIAL & METHODS** 

**Results & Discussion** 

STARS I & Comment


Conclusion

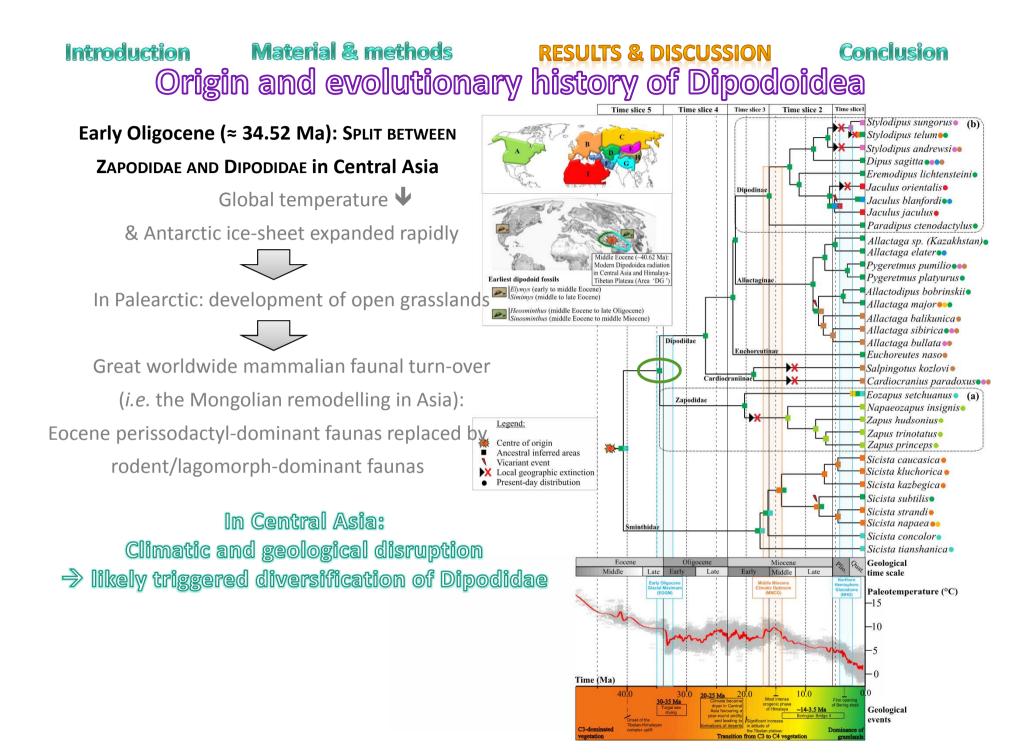
**Biogeographical analyses (Lagrange-DEC)** 


| Biogeographical model:                                    |               | CA                   | - Entre      | 223                   | 00                                                       | and a                                                                               | C                                     | 00                                        | 15                                  |
|-----------------------------------------------------------|---------------|----------------------|--------------|-----------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------|-------------------------------------|
| Classification proposed in<br>Mammal Species of the World | A<br>Nearctic | B West<br>Palearctic | C<br>Siberia | D<br>Central<br>Asia* | E Altai<br>Mt,<br>Mongolian<br>steppe,<br>Yabionoi<br>Mt | F Persian<br>plateau,<br>Anatolian<br>region and<br>caucasus,<br>iranian<br>plateau | G<br>Himalaya<br>+ Tibetan<br>plateau | H Gobi<br>desert,<br>Talkimakan<br>desert | I<br>North<br>Africa<br>+<br>Arabia |
| Jaculus blanfordi                                         | 0             | 0                    | 0            | 1                     | 0                                                        | 1                                                                                   | 0                                     | 0                                         | 0                                   |
| Jaculus jaculus                                           | 0             | 0                    | 0            | 0                     | 0                                                        | 0                                                                                   | 0                                     | 0                                         | 1                                   |
| · · · · · · · · · · · · · · · · · · ·                     | 0             | 0                    | 0            | 0                     | 0                                                        | 0                                                                                   | 0                                     | 0                                         | 1                                   |

#### Time Slice 2: 5,3 to 16 Ma (middle Miocene)

|   | A   | В   | С   | D   | E   | F   | G        | н  |
|---|-----|-----|-----|-----|-----|-----|----------|----|
| A | 199 |     |     |     |     |     |          |    |
| В | 0,3 | æ.  |     |     | (   |     |          |    |
| С | 0,5 | 1   | -   |     |     |     |          |    |
| D | 0,3 | 0,7 | 1   | •   | ( j |     |          | i. |
| E | 0,3 | 0,3 | 0,7 | 0,7 | •   |     |          |    |
| F | 0   | 0,5 | 0,3 | 0,7 | 0,3 |     |          |    |
| G | 0   | 0,3 | 0,3 | 0,5 | 0,3 | 0,5 | <u>u</u> |    |
| н | 0,1 | 0,3 | 0,3 | 1   | 1   | 0,3 | 0,5      | -  |
| 1 | 0   | 0,5 | 0,1 | 0,3 | 0,1 | 0,7 | 0,1      | 0  |




| Introduction           |                                   | Material & methods                          |                                                      |                                             | <b>RESULTS &amp; DISCUSSION</b>             |                                       |                                             |                                             |                                             | Conclusion                         |                                    |  |
|------------------------|-----------------------------------|---------------------------------------------|------------------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|------------------------------------|------------------------------------|--|
| Node                   | eidentification                   |                                             | FC                                                   |                                             | FC1                                         | No                                    | FC2                                         | No                                          | FC3                                         | No                                 | FC4                                |  |
| NOUE                   | enterimeation                     | Yule                                        | BD                                                   | Yule                                        | BD                                          | Yule                                  | BD                                          | Yule                                        | BD                                          | Yule                               | BD                                 |  |
| 1 Crown of<br>Rodentia |                                   | 64.84<br>(60-<br>71,72                      | 64.85<br>(60.7<br>5-                                 | 64.15<br>(56.1<br>8-                        | 63.97<br>(56.6<br>4-                        | 64.8<br>(60.6<br>9-                   | 64.65<br>(60.6<br>5-                        | 64.4<br>(60.5<br>6-                         | 64.46<br>(60.6<br>9-                        | 64.11<br>(60.4<br>6-               | 64.18<br>(60.6-<br>71.37           |  |
|                        |                                   | )                                           | 71.75                                                | 75.22                                       | 76.01                                       | 71.8)                                 | 71.53                                       | 70.79<br>)                                  | 71.1)                                       | 70.87                              | )                                  |  |
|                        | 504                               | 37.9                                        | 37.91                                                | 37.5                                        | 37.39                                       | 37.88                                 | 37.79                                       | 37.65                                       | 37.68                                       | 37.48                              | 37.52                              |  |
| 3                      | FC1 –<br>Douglasciuru             | (35.4<br>9-                                 | (35.5<br>1-                                          | (32.8<br>4-                                 | (33.1<br>1-                                 | (35.4<br>8-                           | (35.4<br>6-                                 | (35.4-                                      | (35.4<br>8-                                 | (35.3<br>4-                        | (35.4<br>2-                        |  |
| 3                      | sjeffersoni                       | 42.09                                       | 41.94                                                | 43.97                                       | 44.43                                       | 41.97                                 | 41.81                                       | 41.38                                       | 41.56                                       | 41.43                              |                                    |  |
|                        | Sjerrer                           | )                                           | )                                                    | )                                           | )                                           | )                                     | )                                           | )                                           | )                                           | )                                  | 41.72                              |  |
|                        |                                   | 12.95                                       | 12.95                                                | 12.81                                       | 12.78                                       | 12.94                                 | 12.91                                       |                                             | · · · · ·                                   | 12.8                               |                                    |  |
| FC2 –<br>Progonomys    | (12.1                             | (12.1                                       | (11.2                                                | (11.3                                       | (12.1                                       | (12.1                                 | 12.86                                       | 12.87                                       | (12.0                                       | 12.82                              |                                    |  |
|                        | 2-                                | 3-                                          | 2-                                                   | 1-                                          | <b>`</b> 2-                                 | 1-                                    | (12.1-                                      | (12.1                                       | 7-                                          | (12.1-                             |                                    |  |
| -                      | (Crown of                         | 14.38                                       | 14.33                                                | 15.02                                       | 15.18                                       | 14.34                                 | 14.29                                       | 14.14                                       | 2-                                          | 14.15                              | 14.25                              |  |
|                        | Murinae)                          | )                                           | )                                                    | )                                           | )                                           | )                                     |                                             | )                                           | 14.2)                                       | )                                  | )                                  |  |
|                        | FC3 –                             |                                             |                                                      |                                             |                                             |                                       |                                             |                                             |                                             |                                    |                                    |  |
|                        | Apodemus                          | 7.37                                        | 7.37                                                 | 7.29                                        | 7.27                                        | 7.36                                  | 7.35                                        | 7.32                                        | 7.33                                        | 7.29                               | 7.29                               |  |
| 12                     | jeanteti &                        | (6.9-                                       | (6.9-                                                | (6.39-                                      | (6.44-                                      | (6.9-                                 | (6.89-                                      | (6.88-                                      | (6.9-                                       | (6.87-                             | (6.89-                             |  |
|                        | Apodemus                          | 8.18)                                       | 8.16)                                                | 8.55)                                       | 8.64)                                       | 8.16)                                 | 8.13)                                       | 8.05)                                       | 8.08)                                       | 8.05)                              | 8.11)                              |  |
|                        | dominans                          |                                             |                                                      |                                             |                                             |                                       |                                             |                                             |                                             |                                    |                                    |  |
|                        | FC4 – Sicista                     | 17.9                                        | 17.9                                                 | 17.71                                       | 17.66                                       | 17.89                                 | 17.85                                       | 17.78                                       | 17.79                                       | 17.7                               | 17.72                              |  |
|                        | primus                            | 16.76                                       | (16.7                                                | (15.5                                       | (15.6                                       | (16.7                                 | (16.7                                       | (16.7                                       | (16.7                                       | (16.6                              | (16.7                              |  |
| 14                     | (Crown of                         | -                                           | 7-                                                   | 1-                                          | 3-                                          | 5-                                    | 4-                                          | 2-                                          | 5-                                          | 9-                                 | 3-                                 |  |
|                        | Sminthidae)                       | 19.87                                       | 19.81                                                | 20.76                                       | 20.98                                       | 19.82                                 | 19.75                                       | 19.54                                       | 19.63                                       | 19.56                              | 19.7)                              |  |
|                        | -                                 | )<br>58.51                                  | )<br>58.51                                           | )                                           | )<br>57.72                                  | )<br>58.47                            | )<br>58.34                                  | )<br>58.11                                  | )<br>58.16                                  | <b>)</b><br>57.85                  | _                                  |  |
|                        | Split                             | (54.7                                       | (54.8                                                | 57.89                                       | (51.1                                       | (54.7                                 | (54.7                                       | (54.6                                       | (54.7                                       | (54.5                              | 57.91                              |  |
| 6                      | Dipodoidea /                      | 8-                                          | 2-                                                   | (50.7-                                      | 1-                                          | 6-                                    | 3-                                          | 5-                                          | 7-                                          | 5-                                 | (54.6                              |  |
| •                      | Muroidea                          | 64.97                                       | 64.74                                                | 67.88                                       | 68.59                                       | 64.79                                 | 64.55                                       | 63.88                                       | ,<br>64.16                                  | 63.95                              | 8-                                 |  |
|                        | in a oraca                        | )                                           | )                                                    | )                                           | )                                           | )                                     | )                                           | )                                           | )                                           | )                                  | 64.4)                              |  |
|                        |                                   | 41.18                                       | 41.18                                                | 40.74                                       | 40.62                                       |                                       | 41.05                                       | 40.9                                        | 40.93                                       |                                    | 40.76                              |  |
|                        |                                   | (38.5                                       | (38.5                                                | (35.6                                       | (35.9                                       | 41.15                                 | (38.5                                       | (38.4                                       | (38.5                                       | 40.71                              | (38.4                              |  |
| 13                     | Radiation of                      | 5-                                          | 8-                                                   | 8-                                          | 7-                                          | (38.5                                 | 2-                                          | 6-                                          | 4-                                          | (38.3                              | 8-                                 |  |
|                        | Dipodoidea                        | 45.72                                       | 45.56                                                | 47.77                                       | 48.27                                       | 4-<br>45.6)                           | 45.43                                       | 44.95                                       | 45.15                                       | 9-45)                              | 45.32                              |  |
|                        |                                   | )                                           | )                                                    | )                                           | )                                           | 43.0)                                 | )                                           | )                                           | )                                           |                                    | )                                  |  |
|                        |                                   | 34.99                                       | 34.99                                                | 34.62                                       | 34.52                                       | 34.96                                 | 34.89                                       | 34.75                                       | 34.78                                       | 34.6                               | 34.63                              |  |
|                        | Divergence                        | (32.7                                       | (32,7                                                | (30.3                                       | (30.5                                       | (32.7                                 | (32.7                                       | (32.6                                       | (32.7                                       | (32.6                              | (32.7-                             |  |
| 21                     | Zapodidae                         | 6-                                          | 8-                                                   | 2-                                          | 6-                                          | 5-                                    | 3-                                          | 8-                                          | 5-                                          | 2-                                 | 38.51                              |  |
| Zapodidae              |                                   | 38.85                                       | 38.72                                                | 40.59                                       | 41.02                                       | 38.75                                 | 38.6)                                       | 38.2)                                       | 38.37                                       | 38.24                              | )                                  |  |
|                        |                                   |                                             |                                                      | )                                           | )                                           | )                                     |                                             |                                             | )                                           | )                                  |                                    |  |
|                        |                                   | <i>,</i>                                    | ,<br>,                                               | 26.00                                       |                                             |                                       | 27.1                                        | 27                                          | 27.02                                       | 26.88                              | 26.91                              |  |
|                        | Diversiones                       | 27.18                                       | 27.19                                                | 26.89                                       | 26.82                                       | 27.16                                 |                                             |                                             |                                             | $(2 \in 2)$                        | $( \mathcal{D} \in \mathcal{A} )$  |  |
| 26                     | Divergence<br>Cardiograpii        | 27.18<br>(25.4                              | 27.19<br>(25.4                                       | (16.4                                       | (23.7                                       | 27.16<br>(25.4                        | (25.4                                       | (25.3                                       | (25.4                                       | (25.3                              | (25.4                              |  |
| 26                     | Cardiocranii                      | 27.18<br>(25.4<br>5-                        | 27.19<br>(25.4<br>7-                                 | (16.4<br>4-                                 | (23.7<br>4-                                 |                                       | (25.4<br>3-                                 | (25.3<br>9-                                 | (25.4<br>4-                                 | 5-                                 | 1-                                 |  |
| 26                     |                                   | 27.18<br>(25.4<br>5-<br>30.18               | 27.19<br>(25.4<br>7-<br>30.08                        | (16.4<br>4-<br>22.01                        | (23.7<br>4-<br>31.87                        | (25.4                                 | (25.4<br>3-<br>29.99                        | (25.3<br>9-<br>29.68                        | (25.4<br>4-<br>29.81                        | 5-<br>29.71                        | 1-<br>29.92                        |  |
| 26                     | Cardiocranii                      | 27.18<br>(25.4<br>5-                        | 27.19<br>(25.4<br>7-<br>30.08<br>)                   | (16.4<br>4-<br>22.01<br>)                   | (23.7<br>4-<br>31.87<br>)                   | (25.4<br>4-<br>30.1)                  | (25.4<br>3-<br>29.99<br>)                   | (25.3<br>9-<br>29.68<br>)                   | (25.4<br>4-<br>29.81<br>)                   | 5-<br>29.71<br>)                   | 1-<br>29.92<br>)                   |  |
| 26                     | Cardiocranii<br>nae               | 27.18<br>(25.4<br>5-<br>30.18<br>)          | 27.19<br>(25.4<br>7-<br>30.08<br>)<br>22.52          | (16.4<br>4-<br>22.01<br>)<br>22.28          | (23.7<br>4-<br>31.87<br>)<br>22.21          | (25.4<br>4-<br>30.1)<br>22.5          | (25.4<br>3-<br>29.99<br>)<br>22.45          | (25.3<br>9-<br>29.68<br>)<br>22.36          | (25.4<br>4-<br>29.81<br>)<br>22.38          | 5-<br>29.71<br>)<br>22.26          | 1-<br>29.92<br>)<br>22.29          |  |
|                        | Cardiocranii<br>nae<br>Divergence | 27.18<br>(25.4<br>5-<br>30.18<br>)<br>22.51 | 27.19<br>(25.4<br>7-<br>30.08<br>)<br>22.52<br>(21.0 | (16.4<br>4-<br>22.01<br>)<br>22.28<br>(19.5 | (23.7<br>4-<br>31.87<br>)<br>22.21<br>(19.6 | (25.4<br>4-<br>30.1)<br>22.5<br>(21.0 | (25.4<br>3-<br>29.99<br>)<br>22.45<br>(21.0 | (25.3<br>9-<br>29.68<br>)<br>22.36<br>(21.0 | (25.4<br>4-<br>29.81<br>)<br>22.38<br>(21.0 | 5-<br>29.71<br>)<br>22.26<br>(20.9 | 1-<br>29.92<br>)<br>22.29<br>(21.0 |  |
| 26<br>28               | Cardiocranii<br>nae               | 27.18<br>(25.4<br>5-<br>30.18<br>)          | 27.19<br>(25.4<br>7-<br>30.08<br>)<br>22.52          | (16.4<br>4-<br>22.01<br>)<br>22.28          | (23.7<br>4-<br>31.87<br>)<br>22.21          | (25.4<br>4-<br>30.1)<br>22.5          | (25.4<br>3-<br>29.99<br>)<br>22.45          | (25.3<br>9-<br>29.68<br>)<br>22.36          | (25.4<br>4-<br>29.81<br>)<br>22.38          | 5-<br>29.71<br>)<br>22.26          | 1-<br>29.92<br>)<br>22.29          |  |

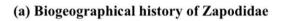


triggered the diversification of DIpodoidea

Heosminthus (middle Eocene to late Oligocene)

Sinosminthus (middle Eocene to middle Miocene)




# Introduction Material & methods RESULTS & DISCUSSION Conclusion Colonisation of the New World and diversification of the Zapodidae



≈20.24 Ma: Radiation of Zapodidea in Central Asia during early Miocene



2- Between early

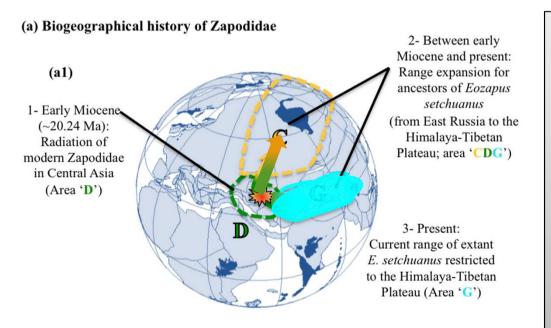


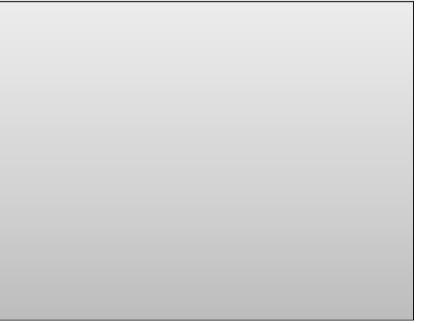
Miocene and present: (a1) Range expansion for ancestors of Eozapus setchuanus 1- Early Miocene (from East Russia to the (~20.24 Ma): Himalaya-Tibetan Radiation of Plateau; area 'CDG') modern Zapodidae in Central Asia (Area 'D') 3- Present: Current range of extant E. setchuanus restricted to the Himalaya-Tibetan Plateau (Area 'G')



# IntroductionMaterial & methodsRESULTS & DISCUSSIONConclusionColonisation of the New World and diversification of the

Zapodidae



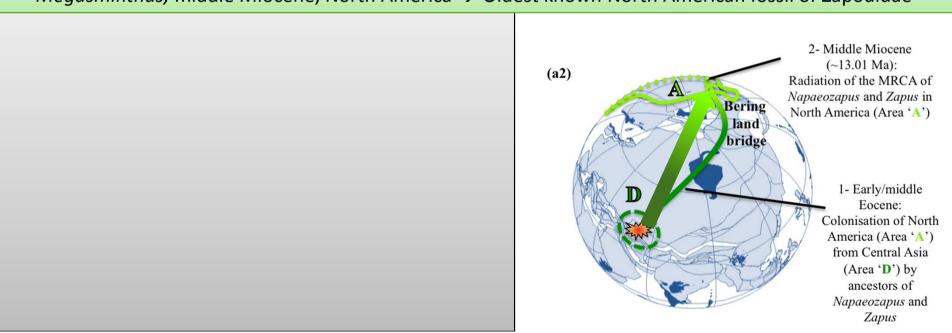


Eozapus setchuanus, the 1st zapodid to diverge

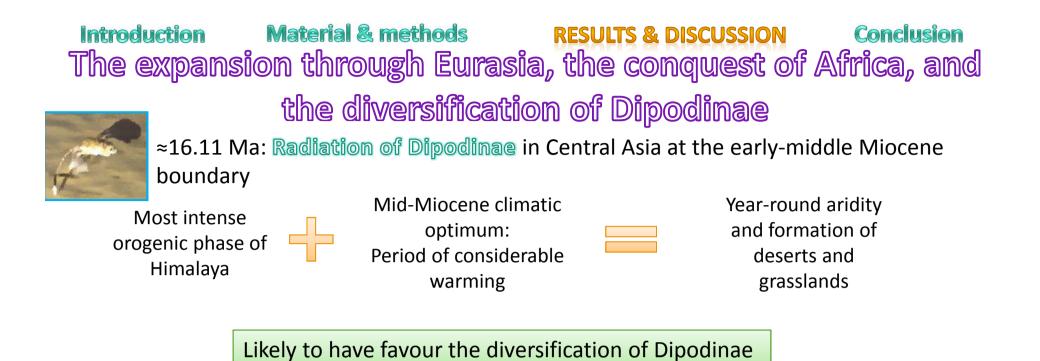
Expansion of the range from East Russia to Himalaya-Tibetan plateau (Area 'CDG')

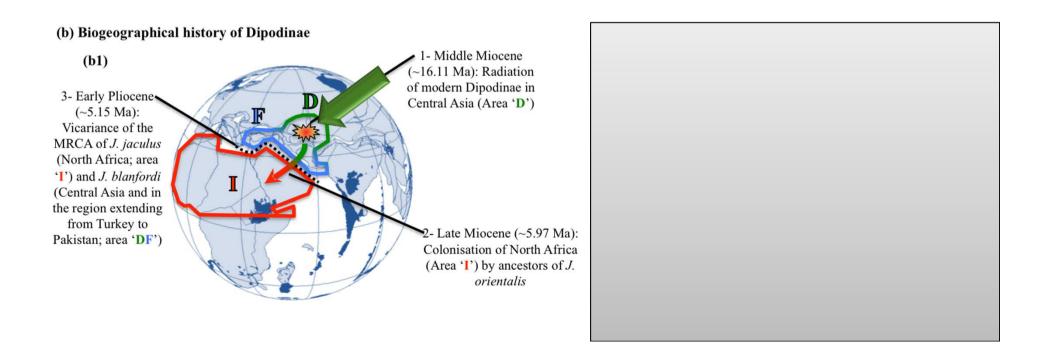


Present: Restricted to Himalaya-Tibetan plateau (Area 'G')





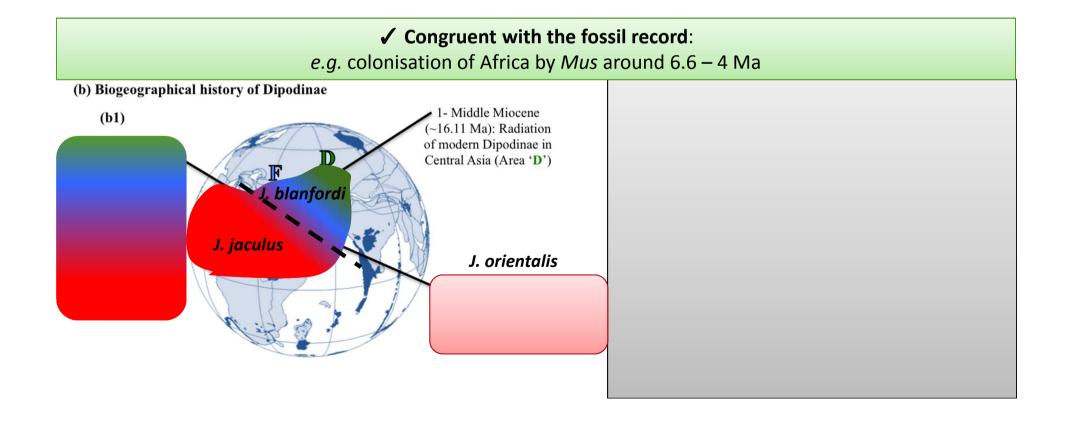


# IntroductionMaterial & methodsRESULTS & DISCUSSIONConclusionColonisation of the New World and diversification of the




✓ Congruent with the fossil record:

*Megasminthus,* middle Miocene, North America  $\rightarrow$  Oldest known North American fossil of Zapodidae





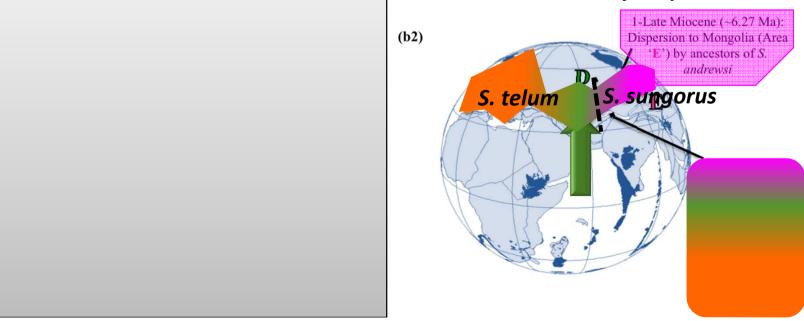



#### Introduction Material & methods Conclusion **RESULTS & DISCUSSION** The expansion through Eurasia, the conquest of Africa, and the diversification of Dipodinae The evolutionary history of Jaculus spp. Late Miocene (≈5.97 Between 5.33 and 5.96 Promoted faunal Ma, the Messinian Ma): Diversification of exchanges between Africa Jaculus spp. in Central Salinity Crisis: and adjacent regions Dessication of the Asia (and colonisation

Mediterranean sea

of Africa)




Introduction Material & methods RESULTS & DISCUSSION Conclusion The expansion through Eurasia, the conquest of Africa, and the diversification of Dipodinae

The evolutionary history of Stylodipus spp.

Late Miocene (≈8.66 Ma): Diversification of the MRCA of *Stylodipus* and *Dipus* in Central Asia Coincide with the replacement of woodland-adapted mammals by moreopen habitat representatives

Late Miocene: Global cooling promoted grasslands & arid habitats in Europe and Central Asia Favoured the diversification of these species adapted to open and arid habitats.

#### Stylodipus andrewsi



### Introduction

Material & methods

**Results & Discussion** 



# Conclusion

- Solved unresolved phylogenetic questions :
  - ✓ Paraphyly of Allactaga
  - ✓ Phylogenetic position of Euchoreutinae



- Inference of a sound biogeographical history of the superfamily
  - ✓ Especially thanks to **the exhaustive sampling of Zapodidae and Dipodinae** 
    - ightarrow Detailed biogeographic scenarios of these two groups
- WHAT MAINLY TRIGGERED THE EVOLUTIONARY HISTORY OF DIPODOIDEA?
  - $\checkmark\,$  Geological and climatic upheavals of Central Asia
  - ✓ AND ESPECIALLY the uplift of the Himalaya-Tibetan plateau
    - ightarrow Induced aridification process
      - $\rightarrow$  Promoted the development of new habitats (*e.g.* deserts and grasslands)





